Source code for towhee.models.uniformer.uniformer

# Code for "UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning"
# arXiv:2201.04676
# Kunchang Li, Yali Wang, Peng Gao, Guanglu Song, Yu Liu, Hongsheng Li, Yu Qiao
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# modified by Zilliz.

from collections import OrderedDict
import torch
from  torch import nn
from torch.utils import checkpoint
from functools import partial
from towhee.models.utils.general_utils import to_2tuple
from towhee.models.utils.weight_init import trunc_normal_
from towhee.models.layers.droppath import DropPath
from towhee.models.layers.mlp import Mlp
from towhee.models.layers.attention import MultiHeadAttention
from towhee.models.uniformer.config import _C
import os

model_path = 'path_to_models'
model_path = {
    'uniformer_small_in1k': os.path.join(model_path, 'uniformer_small_in1k.pth'),
    'uniformer_small_k400_8x8': os.path.join(model_path, 'uniformer_small_k400_8x8.pth'),
    'uniformer_small_k400_16x4': os.path.join(model_path, 'uniformer_small_k400_16x4.pth'),
    'uniformer_small_k600_16x4': os.path.join(model_path, 'uniformer_small_k600_16x4.pth'),
    'uniformer_base_in1k': os.path.join(model_path, 'uniformer_base_in1k.pth'),
    'uniformer_base_k400_8x8': os.path.join(model_path, 'uniformer_base_k400_8x8.pth'),
    'uniformer_base_k400_16x4': os.path.join(model_path, 'uniformer_base_k400_16x4.pth'),
    'uniformer_base_k600_16x4': os.path.join(model_path, 'uniformer_base_k600_16x4.pth'),
}


[docs]def conv_3xnxn(inp, oup, kernel_size=3, stride=3, groups=1): return nn.Conv3d(inp, oup, (3, kernel_size, kernel_size), (2, stride, stride), (1, 0, 0), groups=groups)
[docs]def conv_1xnxn(inp, oup, kernel_size=3, stride=3, groups=1): return nn.Conv3d(inp, oup, (1, kernel_size, kernel_size), (1, stride, stride), (0, 0, 0), groups=groups)
[docs]def conv_3xnxn_std(inp, oup, kernel_size=3, stride=3, groups=1): return nn.Conv3d(inp, oup, (3, kernel_size, kernel_size), (1, stride, stride), (1, 0, 0), groups=groups)
[docs]def conv_1x1x1(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups)
[docs]def conv_3x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups)
[docs]def conv_5x5x5(inp, oup, groups=1): return nn.Conv3d(inp, oup, (5, 5, 5), (1, 1, 1), (2, 2, 2), groups=groups)
[docs]def bn_3d(dim): return nn.BatchNorm3d(dim)
[docs]class CMlp(nn.Module): """ CMlp """
[docs] def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = conv_1x1x1(in_features, hidden_features) self.act = act_layer() self.fc2 = conv_1x1x1(hidden_features, out_features) self.drop = nn.Dropout(drop)
[docs] def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x
[docs]class CBlock(nn.Module): """ CBlock """ # pylint: disable=W0613
[docs] def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.pos_embed = conv_3x3x3(dim, dim, groups=dim) self.norm1 = bn_3d(dim) self.conv1 = conv_1x1x1(dim, dim, 1) self.conv2 = conv_1x1x1(dim, dim, 1) self.attn = conv_5x5x5(dim, dim, groups=dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = bn_3d(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
[docs] def forward(self, x): x = x + self.pos_embed(x) x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x))))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x
[docs]class SABlock(nn.Module): """ SABlock """
[docs] def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.pos_embed = conv_3x3x3(dim, dim, groups=dim) self.norm1 = norm_layer(dim) self.attn = MultiHeadAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop_ratio=attn_drop, proj_drop_ratio=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
[docs] def forward(self, x): x = x + self.pos_embed(x) b, c, t, h, w = x.shape x = x.flatten(2).transpose(1, 2) x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) x = x.transpose(1, 2).reshape(b, c, t, h, w) return x
[docs]class SplitSABlock(nn.Module): """ SplitSABlock """
[docs] def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.pos_embed = conv_3x3x3(dim, dim, groups=dim) self.t_norm = norm_layer(dim) self.t_attn = MultiHeadAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop_ratio=attn_drop, proj_drop_ratio=drop) self.norm1 = norm_layer(dim) self.attn = MultiHeadAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop_ratio=attn_drop, proj_drop_ratio=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
[docs] def forward(self, x): x = x + self.pos_embed(x) b, c, t, h, w = x.shape attn = x.view(b, c, t, h * w).permute(0, 3, 2, 1).contiguous() attn = attn.view(b * h * w, t, c) attn = attn + self.drop_path(self.t_attn(self.t_norm(attn))) attn = attn.view(b, h * w, t, c).permute(0, 2, 1, 3).contiguous() attn = attn.view(b * t, h * w, c) residual = x.view(b, c, t, h * w).permute(0, 2, 3, 1).contiguous() residual = residual.view(b * t, h * w, c) attn = residual + self.drop_path(self.attn(self.norm1(attn))) attn = attn.view(b, t * h * w, c) out = attn + self.drop_path(self.mlp(self.norm2(attn))) out = out.transpose(1, 2).reshape(b, c, t, h, w) return out
[docs]class SpeicalPatchEmbed(nn.Module): """ Image to Patch Embedding """
[docs] def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.norm = nn.LayerNorm(embed_dim) self.proj = conv_3xnxn(in_chans, embed_dim, kernel_size=patch_size[0], stride=patch_size[0])
[docs] def forward(self, x): b, _, t, h, w = x.shape # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) b, _, t, h, w = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.reshape(b, t, h, w, -1).permute(0, 4, 1, 2, 3).contiguous() return x
[docs]class PatchEmbed(nn.Module): """ Image to Patch Embedding """
[docs] def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, std=False): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.norm = nn.LayerNorm(embed_dim) if std: self.proj = conv_3xnxn_std(in_chans, embed_dim, kernel_size=patch_size[0], stride=patch_size[0]) else: self.proj = conv_1xnxn(in_chans, embed_dim, kernel_size=patch_size[0], stride=patch_size[0])
[docs] def forward(self, x): b, _, t, h, w = x.shape # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) b, _, t, h, w = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.reshape(b, t, h, w, -1).permute(0, 4, 1, 2, 3).contiguous() return x
[docs]class Uniformer(nn.Module): """ Code for "UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning" arXiv:2201.04676 Kunchang Li, Yali Wang, Peng Gao, Guanglu Song, Yu Liu, Hongsheng Li, Yu Qiao Args: depth (`tuple[int]`) Depth. Default: (5, 8, 20, 7). num_classes (`int`): dimension of head. Default: 400. img_size (`int`): The spatial crop size for training. Default: 224. in_chans (`int`): Image input channels num. Default: 3. embed_dim (`tuple[int]`) Embedding dimension. Default: (64, 128, 320, 512). head_dim (`int`): Dimension of head. Default: 64. mlp_ratio (`int`): Ratio of mlp hidden dim to embedding dim. Default: 4. qkv_bias (`bool`): Enable bias for qkv if True. Default: True. qk_scale (`float`): Override default qk scale of head_dim ** -0.5 if set. Default: None. representation_size (`int`): Enable and set representation layer (pre-logits) to this value if set. Default: None. drop_rate (`float`): Dropout rate. Default: 0. attn_drop_rate (`float`): Attention dropout rate. Default: 0. drop_path_rate (`float`): Stochastic depth rate. Default: 0.1. split (`bool`): Whether use split attention. Default: False. std (`bool`): Spatial-temporal downsample. Default: False. use_checkpoint (`bool`): Whether use checkpoint. Default: False. checkpoint_num (`tuple[int]`) Checkpoint num. Default: (0, 0, 0, 0). pretrain_name (`string`): Pretrained name. Default: None. """
[docs] def __init__(self, depth = (5, 8, 20, 7), num_classes = 400, img_size = 32, in_chans = 3, embed_dim = (64, 128, 320, 512), head_dim = 64, mlp_ratio = 4, qkv_bias = True, qk_scale = None, representation_size = None, drop_rate = 0, attn_drop_rate = 0, drop_path_rate = 0.1, split = False, std = False, use_checkpoint = False, checkpoint_num = (0, 0, 0, 0), ): super().__init__() self.use_checkpoint = use_checkpoint self.checkpoint_num = checkpoint_num self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models norm_layer = partial(nn.LayerNorm, eps=1e-6) self.patch_embed1 = SpeicalPatchEmbed( img_size=img_size, patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0]) self.patch_embed2 = PatchEmbed( img_size=img_size // 4, patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1], std=std) self.patch_embed3 = PatchEmbed( img_size=img_size // 8, patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2], std=std) self.patch_embed4 = PatchEmbed( img_size=img_size // 16, patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3], std=std) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] # stochastic depth decay rule num_heads = [dim // head_dim for dim in embed_dim] self.blocks1 = nn.ModuleList([ CBlock( dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth[0])]) self.blocks2 = nn.ModuleList([ CBlock( dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]], norm_layer=norm_layer) for i in range(depth[1])]) if split: self.blocks3 = nn.ModuleList([ SplitSABlock( dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer) for i in range(depth[2])]) self.blocks4 = nn.ModuleList([ SplitSABlock( dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer) for i in range(depth[3])]) else: self.blocks3 = nn.ModuleList([ SABlock( dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer) for i in range(depth[2])]) self.blocks4 = nn.ModuleList([ SABlock( dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer) for i in range(depth[3])]) self.norm = bn_3d(embed_dim[-1]) # Representation layer if representation_size: self.num_features = representation_size self.pre_logits = nn.Sequential(OrderedDict([ ('fc', nn.Linear(embed_dim, representation_size)), ('act', nn.Tanh()) ])) else: self.pre_logits = nn.Identity() # Classifier head self.head = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) for name, p in self.named_parameters(): # fill proj weight with 1 here to improve training dynamics. Otherwise temporal attention inputs # are multiplied by 0*0, which is hard for the model to move out of. if 't_attn.qkv.weight' in name: nn.init.constant_(p, 0) if 't_attn.qkv.bias' in name: nn.init.constant_(p, 0) if 't_attn.proj.weight' in name: nn.init.constant_(p, 1) if 't_attn.proj.bias' in name: nn.init.constant_(p, 0)
def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def inflate_weight(self, weight_2d, time_dim, center=False): if center: weight_3d = torch.zeros(*weight_2d.shape) weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) middle_idx = time_dim // 2 weight_3d[:, :, middle_idx, :, :] = weight_2d else: weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) weight_3d = weight_3d / time_dim return weight_3d def forward_features(self, x): x = self.patch_embed1(x) x = self.pos_drop(x) for i, blk in enumerate(self.blocks1): if self.use_checkpoint and i < self.checkpoint_num[0]: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x = self.patch_embed2(x) for i, blk in enumerate(self.blocks2): if self.use_checkpoint and i < self.checkpoint_num[1]: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x = self.patch_embed3(x) for i, blk in enumerate(self.blocks3): if self.use_checkpoint and i < self.checkpoint_num[2]: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x = self.patch_embed4(x) for i, blk in enumerate(self.blocks4): if self.use_checkpoint and i < self.checkpoint_num[3]: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x = self.norm(x) x = self.pre_logits(x) return x
[docs] def forward(self, x): x = self.forward_features(x) x = x.flatten(2).mean(-1) x = self.head(x) return x
[docs]def create_model( model_name: str = 'uniformer_k400_s8', pretrained: bool = False, weights_path: str = None, device: str = None, ): if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' if model_name == 'uniformer_k400_s8': config = _C.MODEL.UniFormerS8 elif model_name == 'uniformer_k400_s16': config = _C.MODEL.UniFormerS16 elif model_name == 'uniformer_k400_b8': config = _C.MODEL.UniFormerB8 elif model_name == 'uniformer_k400_b16': config = _C.MODEL.UniFormerB16 else: raise AttributeError(f'Invalid model_name {model_name}.') model=Uniformer( depth = config.depth, num_classes = config.num_classes, img_size = config.img_size, in_chans = config.in_chans, embed_dim = config.embed_dim, head_dim = config.head_dim, mlp_ratio = config.mlp_ratio, qkv_bias = config.qkv_bias, qk_scale = config.qk_scale, representation_size = config.representation_size, drop_rate = config.drop_rate, attn_drop_rate = config.attn_drop_rate, drop_path_rate = config.drop_path_rate, split = config.split, std = config.std, use_checkpoint = config.use_checkpoint, checkpoint_num = config.checkpoint_num, ) if pretrained: model_checkpoint = torch.load(weights_path, map_location=device) if 'model' in model_checkpoint: model_checkpoint = model_checkpoint['model'] elif 'model_state' in model_checkpoint: model_checkpoint = model_checkpoint['model_state'] # pylint: disable=E1136 state_dict_3d = model.state_dict() for k in model_checkpoint.keys(): # pylint: disable=E1136 if model_checkpoint[k].shape != state_dict_3d[k].shape: if len(state_dict_3d[k].shape) <= 2: continue # pylint: disable=E1136 time_dim = state_dict_3d[k].shape[2] model_checkpoint[k] = model.inflate_weight(model_checkpoint[k], time_dim) if model.num_classes != model_checkpoint['head.weight'].shape[0]: del model_checkpoint['head.weight'] del model_checkpoint['head.bias'] model.load_state_dict(model_checkpoint) model.to(device) return model