towhee.models.vis4mer.utilsΒΆ

Functions

 `cauchy_conj` Pykeops version :param v: (..., N, N) :type v: torch.tensor :param z: (..., N, L) :type z: torch.tensor :param w: (..., N, L) :type w: torch.tensor :param num: (..., N, L) :type num: int :param denom: (..., N, L) :type denom: int `krylov` Compute the Krylov matrix (b, ab, a^2b, ...) using the squaring trick. `nplr` Return w, p, q, v, b such that (w - p q^*, b) is unitarily equivalent to the original HiPPO a, b by the matrix v i.e. a = v[w - p q^*]v^*, b = v b :param measure: the type of measure legt - Legendre (translated) legs - Legendre (scaled) glagt - generalized Laguerre (translated) lagt, tlagt - previous versions of (tilted) Laguerre with slightly different normalization :type measure: str :param n: dimension :type n: int :param rank: rank :type rank: int :param dtype: data type :type dtype: str. `power` Compute a^l and the scan sum_i a^i v_i :param l: power :type l: int :param a: (..., N, N) :type a: torch.tensor :param v: (..., N, L) :type v: torch.tensor `rank_correction` Return low-rank matrix L such that A + L is normal :param measure: the type of measure legt - Legendre (translated) legs - Legendre (scaled) glagt - generalized Laguerre (translated) lagt, tlagt - previous versions of (tilted) Laguerre with slightly different normalization :type measure: str :param n: dimension :type n: int :param rank: rank :type rank: int :param dtype: data type :type dtype: str `transition` Return a, bb transition matrices for different measures :param measure: the type of measure legt - Legendre (translated) legs - Legendre (scaled) glagt - generalized Laguerre (translated) lagt, tlagt - previous versions of (tilted) Laguerre with slightly different normalization :type measure: str :param n: dimension :type n: int